examples:non-residential_buildings:passive_house_swimming_pools

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
examples:non-residential_buildings:passive_house_swimming_pools [2017/12/13 18:26] – [Heating and electricity consumption] kdreimaneexamples:non-residential_buildings:passive_house_swimming_pools [2017/12/13 18:33] (current) – [Comparison of the measured data with projected energy consumption] kdreimane
Line 74: Line 74:
 A total of six ventilation units with heating coils in the supply air are located in the basement. Two different types of devices were used. Those for the pool areas are custom-built devices with two cross-flow heat exchangers and one counter-flow heat exchanger connected in series. One of these devices is equipped with a heat pump in order to extract and recover additional energy from the exhaust air (enthalpy recovery). On account of the high quality building envelope it is not necessary to have the dry supply air enter near the facade.\\ A total of six ventilation units with heating coils in the supply air are located in the basement. Two different types of devices were used. Those for the pool areas are custom-built devices with two cross-flow heat exchangers and one counter-flow heat exchanger connected in series. One of these devices is equipped with a heat pump in order to extract and recover additional energy from the exhaust air (enthalpy recovery). On account of the high quality building envelope it is not necessary to have the dry supply air enter near the facade.\\
  
-The ventilation technology plays a key role for an energy-optimised indoor swimming pool. Full exploitation of the potential was not possible during the adjustment phase - despite the excellent results already obtained. The humidity in the pool areas can be increased further, and regulation of the devices has to be optimised even more. \\+The ventilation technology plays a key role for an energy-optimised indoor swimming pool. Full exploitation of the potential was not possible during the adjustment phase - despite the excellent results already obtained. The humidity in the pool areas can be increased further, and regulation of the devices has to be optimised even more.  
 + 
 +[{{ :picopen:luenen_fig5.png?500|**Figure 5: Influence of changes in the humidity levels in the pool halls (left) or air volume flow (right) on the electricity or heat consumption of the ventilation units.**}}]
  
 The analysis also showed that the total circulating air volume flow of all devices in the indoor pool makes up about 70 % on average of the supply air, with only 30 % outdoor air flow. Only the latter is necessary for dehumidification and air renewal, whilst the circulating air volume flow is only needed to ensure that the air in the halls is sufficiently mixed and distributed. Lower air circulation volumes are viable and imply significant energy savings. This was demonstrated with experiments on air flow in the halls (fog experiments). The ultimate aim of the Passive House concept for indoor swimming pools is operation completely without recirculated air, since this means a considerable reduction in the electricity consumption of the ventilation units.\\ The analysis also showed that the total circulating air volume flow of all devices in the indoor pool makes up about 70 % on average of the supply air, with only 30 % outdoor air flow. Only the latter is necessary for dehumidification and air renewal, whilst the circulating air volume flow is only needed to ensure that the air in the halls is sufficiently mixed and distributed. Lower air circulation volumes are viable and imply significant energy savings. This was demonstrated with experiments on air flow in the halls (fog experiments). The ultimate aim of the Passive House concept for indoor swimming pools is operation completely without recirculated air, since this means a considerable reduction in the electricity consumption of the ventilation units.\\
Line 80: Line 82:
 Various tests relating to the effect of higher humiditiy in the halls and low circulating air volume flow were carried out during the monitoring. The significant effects on the heating and electricity consumption observed in the baselinse research could thus also be confirmed in practice.\\ Various tests relating to the effect of higher humiditiy in the halls and low circulating air volume flow were carried out during the monitoring. The significant effects on the heating and electricity consumption observed in the baselinse research could thus also be confirmed in practice.\\
  
-Regulation of the ventilation units takes place based on the setpoint value for indoor air humidity; lower humidity levels require higher outdoor air changes for drying the air, which leads to higher heat consumption. In the course of operation, the set values for humidity levels in the halls were changed for various reasons. On 18.9.12, the humidity in three pool halls was decreased considerably (ca. - 15 percentage points or 4.4 g/kg), which resulted in a substantial increase in the heat consumption (the total for the three halls was ca. + 410 kWh/day). Before this date no supplementary heating via the heating coil was required in the pool area 1+2 since the heat pump of the unit had been sufficient for heating (Fig. 5). The lower humidiy caused in increase of the electricity consumption of the three ventilation units by almost 100 kWh/day. This clearly demonstrates the influence of humidity in the pool areas on the building’s energy consumption. \\ +Regulation of the ventilation units takes place based on the setpoint value for indoor air humidity; lower humidity levels require higher outdoor air changes for drying the air, which leads to higher heat consumption. In the course of operation, the set values for humidity levels in the halls were changed for various reasons. On 18.9.12, the humidity in three pool halls was decreased considerably (ca. - 15 percentage points or 4.4 g/kg), which resulted in a substantial increase in the heat consumption (the total for the three halls was ca. + 410 kWh/day). Before this date no supplementary heating via the heating coil was required in the pool area 1+2 since the heat pump of the unit had been sufficient for heating (Fig. 5). The lower humidiy caused in increase of the electricity consumption of the three ventilation units by almost 100 kWh/day. This clearly demonstrates the influence of humidity in the pool areas on the building’s energy consumption. 
-\\+
  
-|{{:picopen:luenen_fig5.png?600|}}|\\ + 
-|//**Figure 5:\\ Influence of changes in the humidity levels in the pool halls (left) or air volume flow (right) on the \\ electricity or heat consumption of the ventilation units.**//|\\ + 
-\\ +By means of a fog experiment for visualisation of the indoor air flow it was ascertained that no problems with "dead corners" or air flow through the hall occurred even with considerably decreased supply air volume flows (with identical humidity). For this reason, on 19.12.12 the air quantity was reduced (by 41 %) from the 14 500 m³/h in accordance with VDI 2089 to just 8 500 m³/h in the pool hall 1+2. The electricity consumption fell by around 74 kWh/day with this measure alone (Fig. 5, right). This corresponds to savings of 2200 kWh per month by means of this modification in just one pool hall. This measured data confirms the considerations in the earlier baseline research that by means of intelligent ventilation planning and the resulting reduction in the recirculation air, it is possible to achieve electricity savings without impairing the air quality. 
-By means of a fog experiment for visualisation of the indoor air flow it was ascertained that no problems with "dead corners" or air flow through the hall occurred even with considerably decreased supply air volume flows (with identical humidity). For this reason, on 19.12.12 the air quantity was reduced (by 41 %) from the 14 500 m³/h in accordance with VDI 2089 to just 8 500 m³/h in the pool hall 1+2. The electricity consumption fell by around 74 kWh/day with this measure alone (Fig. 5, right). This corresponds to savings of 2200 kWh per month by means of this modification in just one pool hall. This measured data confirms the considerations in the earlier baseline research that by means of intelligent ventilation planning and the resulting reduction in the recirculation air, it is possible to achieve electricity savings without impairing the air quality. \\+
 \\ \\
 ===== Comparison of the measured data with projected energy consumption ===== ===== Comparison of the measured data with projected energy consumption =====
 +[{{ :picopen:luenen_fig6.png?500|**Figure 6: The calcualted final energy demand (coloured bars) of the updated energy balance under the measured boundary conditions of the winter of 2012/2013 in comparison with the measured data (grey bars) from the time period between April 2012 and March 2013.** \\ \\ More accurate correlation of the calculation with the measured data is not to be expected solely  on account of discontinuous operation and remaining uncertainties relating to some of the  assumptions. The magnitudes are correctly calculated.  (Note: these are specific values  referring to the treated floor area).}}]
 +The possibility of reliably predicting the energy demand of a building during the planning stage is a basic prerequisite for achieving a high level of energy efficiency as this allows optimisation of individual components and of the overall building concept. The energy flows in an indoor swimming pool are extremely complex and difficult to comprehend on account of the many interactions and control systems. The multi-zone PHPP mentioned previously was developed for this reason. This tool was during the planning stage for the specific project requirements and is still being further developed. 
  
-The possibility of reliably predicting the energy demand of a building during the planning stage is a basic prerequisite for achieving a high level of energy efficiency as this allows optimisation of individual components and of the overall building concept. The energy flows in an indoor swimming pool are extremely complex and difficult to comprehend on account of the many interactions and control systemsThe multi-zone PHPP mentioned previously was developed for this reasonThis tool was during the planning stage for the specific project requirements and is still being further developed\\+The present monitoring data was used to verify the assumptions, approaches and calculation methods used for the energy balance and to improve these further. Major adjustment of calculation assumptions was only necessary for the heating demand of the pool water. In this case the measured data were considerably lower than the predicted values. The main reason for this variation was the evaporation, which was deliberately estimated too high during the planning phase in order to be on the safe sideNo reliable data was available for a plausible estimateThe measured data presented here confirms that in practice the average evaporation quantities are significantly lower during the usage times than those given in [VDI 2089] for dimensioning the ventilation units. (Note: the VDI design values are peak load values)
  
-The present monitoring data was used to verify the assumptionsapproaches and calculation methods used for the energy balance and to improve these furtherMajor adjustment of calculation assumptions was only necessary for the heating demand of the pool water. In this case the measured data were considerably lower than the predicted values. The main reason for this variation was the evaporation, which was deliberately estimated too high during the planning phase in order to be on the safe side. No reliable data was available for plausible estimate. The measured data presented here confirms that in practice the average evaporation quantities are significantly lower during the usage times than those given in [VDI 2089] for dimensioning the ventilation units(Note: the VDI design values are peak load values)\\+Apart from pool water heating, the other major applications (space heatinghot water generation and electricity) were already correctly represented in the energy balance during the planning phaseWith adjusted boundary conditions, correlation of the measured data with the calculations is excellent (keeping in mind unavoidable uncertainties), which confirms the calculation approach in principle and provides valid basis for energy balancing of subsequent projects. The entire energy balance of the evaluated first year of measurement is shown in Fig. 4 in a comparison with the updated energy balance calculation with adjusted parameters (corresponding with the measured data).  
 + 
 +Heating the required hot water accounts for the biggest share of the overall final energy consumption (pool water and hot water for other uses), followed by the total for the electrical applicationsSome of the findings obtained so far from the data evaluation of the Lippe swimming pool and their effect on the energy balance calculation are described below
  
-Apart from pool water heating, the other major applications (space heating, hot water generation and electricity) were already correctly represented in the energy balance during the planning phase. With adjusted boundary conditions, correlation of the measured data with the calculations is excellent (keeping in mind unavoidable uncertainties), which confirms the calculation approach in principle and provides a valid basis for energy balancing of subsequent projects. The entire energy balance of the evaluated first year of measurement is shown in Fig. 4 in a comparison with the updated energy balance calculation with adjusted parameters (corresponding with the measured data). \\ 
-\\ 
-|{{:picopen:luenen_fig6.png?600|}}|\\ 
-|//**Figure 6:  \\ The calcualted final energy demand (coloured bars) of the updated energy balance under the \\ measured boundary conditions of the winter of 2012/2013 in comparison with the measured \\ data (grey bars) from the time period between April 2012 and March 2013.**\\ 
-\\  
-More accurate correlation of the calculation with the measured data is not to be expected solely \\ on account of discontinuous operation and remaining uncertainties relating to some of the \\ assumptions. The magnitudes are correctly calculated.  (Note: these are specific values \\ referring to the treated floor area).//|\\ 
-\\ 
-Heating the required hot water accounts for the biggest share of the overall final energy consumption (pool water and hot water for other uses), followed by the total for the electrical applications. Some of the findings obtained so far from the data evaluation of the Lippe swimming pool and their effect on the energy balance calculation are described below. \\ 
-\\ 
  
 ===== Energy balance for heating pool water  ===== ===== Energy balance for heating pool water  =====
examples/non-residential_buildings/passive_house_swimming_pools.1513185974.txt.gz · Last modified: 2017/12/13 18:26 by kdreimane